代表性成果
[10] Z. Wang, Y. Cao and P. Yan, Goos-Hänchen effect of spin waves at heterochiral interfaces. Phys. Rev. B 100, 064421 (2019).
[9] Z. Wang, B. Zhang, Y. Cao and P. Yan, Probing the Dzyaloshinskii-Moriya Interaction via the Propagation of Spin Waves in Ferromagnetic Thin Films. Phys. Rev. Applied 10, 054018 (2018).
[8] B. N. Zhang, Z. Y. Wang, Y. S. Cao, P. Yan and X. R. Wang, Eavesdropping on spin waves inside the domain-wall nanochannel via three-magnon processes, Phys. Rev. B 97, 094421 (2018).
[7] Z. Y. Wang, M. Z. Li, R. F. Wang, Resonance beyond frequency-matching: multidimensional resonance. New Journal Of Physics 19, 033012 (2017).
[6] Z. Wang, R. Wang, Ultrafast annular-magnetic-field-driven vortex-core reversals. AIP Advances 6, 125121 (2016).
[5] X. Dong, Z. Wang, R. Wang, Deep sub-nanosecond reversal of vortex cores confined in a spin-wave potential well. Applied Physics Letters 104, 112413 (2014).
[4] L. Yang, Z. Wang, L. Ma, A. Li, J. Xin, R. Wei, H. Lin, R. Wang, Z. Chen and J. Gao, The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles. ACS nano 12, 4605-4614 (2018).
[3] Z. Zhou, R. Tian, Z. Wang, Z. Yang, Y. Liu, G. Liu, R. Wang, J. Gao, J. Song, L. Nie, X. Chen, Artificial local magnetic field inhomogeneity enhances T2 relaxivity. Nature communications 8, 15468 (2017).
[2] Z. Zhou, Z. Zhao, H. Zhang, Z. Wang, X. Chen, R. Wang, Z. Chen, J. Gao, Interplay between longitudinal and transverse contrasts in Fe3O4 nanoplates with (111) exposed surfaces. ACS nano 8, 7976-7985 (2014).
[1] Z. Zhao, Z. Zhou, J. Bao, Z. Wang, J. Hu, X. Chi, K. Ni, R. Wang, X. Chen, Z. Chen, J. Gao, Octapod iron oxide nanoparticles as high-performance T(2) contrast agents for magnetic resonance imaging. Nature communications 4, 2266 (2013).