王振宇博士在PRL发表重要研究成果

2022-9-7 19:24:38本站

   涡旋自旋波因其携带轨道角动量(orbital angular momentum, OAM)的属性最近引起了学界的广泛关注。磁子的OAM属性为磁子通信提供了一个全新的自由度,携带不同OAM量子数的涡旋自旋波具有正交性,可以用来加载不同的信号,有望提高磁子通信的信道容量,在信息存储、通信和粒子操控等领域具有广阔的应用前景。然而,在构建基于OAM的大容量磁子通信器件方面仍面临着一个重大的挑战,即如何产生携带多OAM、宽频带的涡旋自旋波束。我们研究了磁性纳米圆盘中涡旋自旋波与涡核旋进模式之间的非线性散射过程,理论分析了涡旋自旋波频率梳产生的条件。我们发现,涡旋自旋波因其独特的旋转对称性要求频率梳模式的形成需要同时满足能量守恒和轨道角动量守恒,即频率梳的最小频率间隔等于涡核的旋进频率,而相邻谱线的轨道角动量相差一个量子数,如图1(a)所示。该工作预言的涡旋自旋波频率梳可以同时携带多OAM,从而有望实现基于OAM的多路复用磁子通信。

Fig2.png

1(a) 涡旋自旋波与旋进涡核之间非线性散射产生的涡旋自旋波频率梳示意图;(b) 涡旋自旋波发生彭罗斯超辐射效应时频率梳谱线的振幅以及模式分布。

通过进一步研究,我们还发现,当涡核的旋进速度大于涡旋自旋波的波前速度时,涡旋自旋波频率梳中的高阶模振幅会被显著放大,而低阶模则被束缚在涡核的旋进轨道内,如图1(b)所示。该放大效应是彭罗斯爵士1969年在研究如何从旋转的黑洞中提取能量时提出的,被称为彭罗斯超辐射。磁子的彭罗斯超辐射效应显著提高了磁子频率梳的平整度 (flatness),有助于磁子频率梳在微波精密测量、磁传感等领域的应用,开辟了利用磁子学模拟旋转黑洞等天文学现象的新思路。

该研究得到了国家自然科学基金、中国博士后科学基金以及欧盟玛丽居里项目的资助。

 

论文链接https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.107203