金哲珺雨在PRL发表重要研究成果
2025-9-16 8:54:45本站
磁子 (自旋波的量子) 因长寿命、高可调等优势,在传感、计算等方面备受学术界关注,其与量子比特、声子、光子等平台的兼容性持续推动着量子磁子学的发展,而有效的磁子-磁子耦合是磁子电路量子信息传递的关键。传统耦合来源包括磁偶极相互作用、层间交换、面内各向异性等。此外,一些非磁媒介,例如腔光子,也可以作为一个平台去间接地介导磁子之间的耦合。此前工作多聚焦于各向同性系统中的长波长磁子,例如通过层间交换作用实现层状反铁磁体中零波矢磁子的耦合,或通过磁偶极作用实现多层结构中小波矢磁子的耦合,但始终无法实现短波长磁子的本征各向异性耦合,而这种耦合是磁子电路定向控制的关键,是领域内长期未解决的挑战。在常规反铁磁体中,由于亚晶格磁化近乎完全抵消,磁偶极相互作用可忽略;即便施加外磁场诱导净磁化,也会破坏具有相反手性的磁子简并性,仅能使磁子能级轻微偏移,无法产生真正的磁子模式耦合,难以满足量子应用需求。
为此,我们将目光投向新兴的“交替磁体 (altermagnets, 亦称交错磁体)”。这类磁体打破时间反演对称性却无净磁化,兼具铁磁体与反铁磁体的中间特性,有望成为解决上述问题的新平台。
图1:d波交替磁体中磁偶极作用诱导的手性磁子强耦合示意图。
考虑d 波双层交替磁体模型 (图1),我们得到以下核心结果:无磁偶极作用时,交替磁体的磁子展现出独特的能级交叉行为:零外场下,右手性与左手性磁子仅在点 (零波矢) 简并;施加面内外磁场后,简并点会从点转移至有限波矢处,但保持能级交叉,并体现出明显的各向异性。引入磁偶极作用后,其会打破磁子的自旋角动量守恒,使具有相反手性的交换磁子发生耦合,在原本能级交叉的区域打开能隙,表现为“能级排斥”。其耦合强度约为磁子能量的百分之一,达到强耦合条件。此外,磁偶极作用诱导的磁子-子耦合具有显著的方向依赖性:仅当磁子传播方向落在特定窗口时,耦合才存在;通过 MUMAX3进行的全微磁模拟与理论推导结果完全吻合 (图2)。进一步的研究显示,能级排斥现象对 Gilbert 阻尼、高次非线性磁子过程、热涨落等干扰具有鲁棒性,证明了理论预测的实验可行性。
图2:微磁学模拟与线性自旋波理论 (虚线) 结果比较。
该工作首次揭示了磁偶极作用在交替磁体中的独特作用:不同于常规反铁磁体中磁偶极作用的可忽略性,或铁磁体中磁偶极作用仅塑造磁子色散的特性,交替磁体中磁偶极作用能以“简并微扰”形式诱导相反手性磁子的强耦合,填补了“短波长磁子本征各向异性耦合”的研究空白,拓展了交替磁体的新奇物理现象版图,为量子磁子信息处理提供了新的思路。
本研究受国家重点研发计划,国家自然科学基金重点、面上项目,以及中国博士后科学基金的资助。
文章链接: